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Abstract-An analysis is presented for a novel coupling config-
uration in which a circnlar dielectric disk and ring are arranged
eccentrically. Whispering gallery (WG) mode coupling charac-
teristics between the dielectric disk and ring are investigated.
In this paper, a coupled-mode equation based on the Lorentz’s
reciprocity theorem is utilized. Distributed coupling coefficients
and electric field distributions around the coupling region are
obtained numerically through solving the coupled-mode equation.
The theory described in this paper is confirmed by comparing
measured electric field distributions with calculated ones. Elec-
tromagnetic powers flowed along the disk are also calculated. It is
shown that coupling quantity of the eccentric configuration would
be easily controlled by changing a radius of the disk or ring. The
results obtained here will be used to design a WG mode coupled
resonator for millimeter wave integrated circuits.

I. INTRODUCTION

w

HISPERING gallery (WG) mode dielectric resonators

have received considerable attention of many re-

searchers of millimeter wave integrated circuits [1 ]–[4].

Advantages offered by this kind of resonator, such as good

field concentration, high quality factor, and adoptability to

integrated circuit, lead to realize excellent performance of

frequency selective devices [2] in millimeter and optical wave
region.

In the past several years we have studied different shaped

WG mode dielectric resonators, such as a circular disk, ring,
elliptic disk, and coaxial one [5]–[7]. To develop analytical
approaches of the WG mode dielectric resonators, we have
considered the resonators which have relatively large dimen-
sions compared to handling wavelengths. In the studies we find

that there are a lot of resonant modes existing in a large WG
mode resonator and its free spectral range (FSR) is too narrow
to use practically. Thus the performance of a bandpass filter
using a single WG mode dielectric resonator is poor in general.
To obtain better performance, a coupled resonator consisting of
more than one single WG mode resonator may be used. In this
way, the FSR of the coupled resonator can be expanded to the
least common multiple (LCM) of the individual resonators [8].

In this paper, we propose a novel coupling configuration

composed by a WG mode dielectric disk and a ring, as
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Fig. 1. Coupled dielectric resonator,

shown in Fig. 1. Unlike traditional configurations in which two
curved dielectric waveguides are arranged in cascade or side

by side [3] [9]–[1 1], we place the disk inside the ring to form
an eccentric configuration. It is obvious that coupling quantity
between the disk and ring would be easily controlled by
changing the radii of the disk andJor ring. Additionally, the fact
that this eccentric configuration occupies so smaller area, when
compared with the same dimensional cascade arrangement,
enables us to use it in integrated circuits.

For a case of using two dielectric resonators to obtain a

coupled resonator, it is the most important to understand the

coupling characteristics of the coupling region. As the first step
to realize the coupled resonator, we concentrate our attention to
investigate the coupling characteristics between the eccentric

configuration of the disk and ring.
Since the coupling characteristics depend strongly on the

radii of the disk and ring, we have investigated various
eccentric coupling configurations. As a result, two typical
cases are given here. A coupled-mode equation of the cou-
pling configuration is derived from the Lorentz’s reciprocity
theorem. Coupled electromagnetic field around the coupling
mechanism is expressed by linear combination of those of
individual curved guides with weight functions.

The analytical method is given in the following section. In
Section III, the coupled-mode equation is solved numerically
and the results of distributed coupling coefficients and electric
field distributions are presented. In order to verify the theory
described here, in Section IV, experiments for the same di-
mensional configurations as calculations are carried out. The
experimental results are also compared with the theoretical
ones and they show a good agreement. Finally, electromag-
netic powers propagating along the disk are calculated in the
Section V. As a consequence, we can expect to apply the
method described here to design a better performance filter
in the future.
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II. DERIVATIONOF COUPLED-MODE EQUATION

A. An Application of Reciproci~ Theorem for

WG Mode Fields in Two Media E. (r, 8, y) and

~h(r, $, y) under Cylindrical Coordinates

So far, mathematical formulations which describe two pal-

allel and nonparallel dielectric waveguide coupling mode
under rectangular coordinates have been introduced variously
[12] -[15]. Although the formulation applies to nonparallel
systems, it is useful only when the coupling region is small,
e.g. those like two dielectric disks coupled side by side [14],
[15]. However, a mathematical formulation for the coupling
structure such as Fig. 1, which has a large region of dielectric
proximity, has not been found. On some assumptions discussed

below, we derive a new mathematical formulation under
cylindrical coordinates and its validity will also be verified
by comparing the calculated results with experimental ones
in the later Sections. We consider two sets of the WG mode
field (ha, Ha) and (I?b, lZb) in two different media Ea(r, 19,y)
and 66(r, d, y), which satisfy the Maxwell’s equations and
the boundary conditions. Following similar procedures for the
Lorentz’s reciprocity theorem [12]–[1 3], we obtain a relation
in a cylindrical coordinates as follows

v.(E~xH~–E~xHfJ

= ju(lsa(?-, 0, y) – &b(?-,6, y))lla . E~. (1)

Before proceeding further with the formal mathematical

manipulation, it is necessary to state the assumptions we use
in the analysis.

1)

2)

3)

The radii of curved dielectric waveguides we discussed
are considerably larger than handling wavelength.
Electromagnetic fields are well confined in the curved
dielectric waveguides.
The radiation loss of the dielectric waveguides is con-
siderably small.

Taking into account the above assumptions, we can obtain
the following relation after applying the (1) to an infinitesimal
section A6’. The derivation of (2) is shown in Appendix A

t?

/./%.
;(Eax Hb-Ebx Ha).&in@

= jw H (tsa(r, O,y) - q(r, O,y))E~ ~E~ drdy.
s

(2)

Where to keep the (2) be a function of 6’ the infinitesimal
section A(3 is made substantially thin, therefore we take an
area integral instead of volume integral over (1). The ~ is
symbol for a unit vector.

B. Typical Example

1) Coupling Structure and Coordinate System: Fig. 2 shows
the coupling structure of a three-dimensional (3-D) circular
disk and ring waveguides and the relationship between them
under different coordinates. In the figure, RI is a radius of
the disk, while R2 and R3 are radii of the ring. Both disk
and ring have the same height of H and complex relative

~

Fig. 2. Coordinate system and coupling region.

permittivity E, = E’ – j’s”. The relative permittivity of
surrounding medium is El. We now introduce two cylindrical

coordinates OP(rP, OP,y) and Og(rQ, 19~,y) for the disk and
ring, respectively , as shown in Fig. 2. For the convenience
of analysis, we sometimes do not make distinctions between
oP(rP, 19P,y) and o(r, 0, y) in the following proceedings. For
the two cylindrical coordinates mentioned above, there exist
the relations between the disk and ring as follows

?g = cos(19 – Og)? – sin(/3 – Og);

~, = sin(d – 19q)?+ cos(d – f9,)~

yq=y (3)

rq = J(rPsindP)2 + (rpcos@p + Rz – R1)2

19q = sin-l

( )

TP sin 6P

rq
(4)

When the fields of the disk m-e

E@ = EYPy

Hpt = H.P?

EPO = EOP~

Hp% = H6P% (5)

using (3) and (4), we can express the fields of the ring under
the disk’s coordinates as

E@ = sin(~ – 19q)E8q? + Evqy

H@ = (sin(6’ – 19q)H@q+ COS(6’– Oq)Hrq)?

EqO = COS(d – O~)Eeq~

Hq@ = (– sin(t9 – f3q)~rq + COS(19 – .19q)Hdq)~ (6)

where t and .9 indicate the transverse and longitudi-

nal components, respectively. The symbols Eyp, HTp,

lZ@P, H@P, Byq, Hrq, Egq, HOq given in [5] are solutions for

the fields in the isolated disk and ring and are also rewritten
in the Appendix B. According to WG mode nomenclature,
these solutions belong to WGH mode [4].

2) Coupled-Mode Equation: As shown in Fig. 3 (a), (b),
and (c), we suppose the functions eP (r, 8, y) and Eq (r, 6, y)

represent the variation in the relative permittivities when only
the disk and ring are presented, respectively, i.e.,
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Fig. 3. Relative permittivities for (a) ZP(r, O, Y) with a single disk, (b)

%(T, g, ‘Y)wi~ a single ring, (c) e(r, O, y) with both dkk and ring.

where EP(r, 6, y) = EI (nots~ ) in the region ring OccUpies
and vice versa. The function E(T, 0, y) represents the relative

permittivity when both disk and ring exist simultaneously. Ac-
cording to the coupled-mode theory [13]–[ 16], we express total

coupled fields (IZc, llc) around the coupling region by linear

combination of modal fields (131,2, HI,2 ) of the individual
waveguides with weight functions mp (0), mq (0). We also note
that the following expansion is only an approximate set of
solutions to the Maxwell equations in the coupled-waveguide
medium F(T, 0, y) and the radiation mode has been neglected

Ec(r, 0, y) = mp(o)~l(~, ~,9)
+ rnq(f9E2(T,0, y)

N rep(o) exp[-j(& - j~P)%@Pl

(8a)

where El,2 and HI ,Z which propagate in the +6’ direction
are the mode fields each guide supports if the other guide is
not there. The ~P,~ and aP,~ are their phase and attenuation

constants. The derivation of longitudinal components appeared

in (8a) are shown in Appendix C. On the other hand, the modal
fields propagating along the –6’ direction of the isolated disk

and ring can be written respectively, as follows

~~ (r, 6, y) H exp[j(p, – jap)Rp@pl(E~– ~pd)

H; (r, 6, y) N exp[~(~p – ~aP)&OP](-ll~ + ~Pe~) (ga)

l?; (T, 61,Y) N exp[~(~g – jcY~)%~gl(E~ – Gx~)

H;(T, 0, y) m exp[~(~, – ~CYq)~qOq](-H~ + Hqo~) (gb)

where, superscript – indicates the —19direction.
For the purpose of deriving coupled-mode equations, two

sets of electromagnetic fields are necessary by using reci-

procity relation (2). We choose the total coupled fields shown
in (8a) and (8b) as the first set of solutions. For the second set,
we choose individual modal fields which propagate in the –9
direction. That is, we get coupled-mode equation (10) when
we choose Ec, Hc (8a,b) and E;, H; (9a); we get (11) when
we choose Ec, HC (8a,b) and E;, H; (9b)

(11)
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TABLE I
DIMENSIONSOF THE DISK AND RING

fO=24GHz, ~=2.01 -j 8.643 x10-4, &l= 1.0, H= 8 mm

CASE1

RI= 10.0cm

R2=11.2em

Rg= 12.0cm

Oq

w

Op
R3

~1 R2

CASE2

RI= 10.0cm

Rz= 20.0 cm

R3= 20.8 crn

ou R3
Op

\ R2

RI

is propagating factor of the coupled mode. Equation (10) and

(11) can be regarded as simultaneous differential equation
form and rewritten as a matrix form. Therefore, for the weight
functions mP (0), mg (i3), we have

where k,J (i, j = p, q) indicate coupling coefficients which are
complex values, and vary with O direction.

III. NUMERICAL RESULTS

A. Dimensions of Calculation

Since the coupling characteristics depend very strongly on
the radii of the disk and ring, it is necessary to investigate
various cases of eccentric configuration. In this paper we

discuss two typical examples, i.e., for a fixed disk, radii of the
ring are changed relative smaller and larger. From now on we
call these two examples as CASE1 and CASE2, respectively.
The dimensions and dielectric constants used in calculations
are summarized in the Table I. The coupling range considered
in this paper is —n/4[rad.] <0< ~/4[rad.] in 6’direction.

B. Distributed Coupling Coejjicients

Putting the integrals in (10) and (11) into practice, we show
the coupling coefficients ~,j (z, j = p, q) between the disk and

ring in Fig. 4, where fi~j = k,j / (–j). Unlike parallel coupling
cases, eccentric coupling structure gives the complex coupling
coefficients varying with propagating direction. Corresponding
to the coupling structures shown in the Table I, the CASE1
are more closely matched and has greater region of dielectric
proximity , so that its coupling range is longer than that of
the CASE2. For the example of here the coupling range of the
CASE1 is at least 0.4 rad. longer than the CASE2 in terms of
angles. As a consequence, we can easily control the coupling
quantity between disk and ring by changing the radii of the
disk andlor ring.

w I I I I I I I I I
-0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.8 0.8

O[rad.]

7 F,.
-; 1_- ...

—1~4-.-
-a
s -0.5 .................. --<---Im(Kp@ ----------

8
Im(K@ , ,

-1.0 I
-0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8

O[rad.]

Fig. 4. Coupling coefficients of calculation.

C. Coupled Field Distributions

Solving the coupled-mode equation (12) by means of the
results of the integrals in (10) and (11), we can obtain weight
functions mP (6’) and mq (0) numerically. Here, initial condi-

tions mP(–n/4) = O,m~(–n/4) = 1.0 + jO, which mean
the ring is excited, are used. Then the coupled electric field
distributions around the coupling region can be determined by
substituting mP (0) and mg (0) into (8a). The results of coupled
electric field distribution, shown in Fig. 5, are drawn using
contour lines and the separations between two lines are 2.5
dB. It is obvious that CASE1 yields a very distinct result from
that of CASE2. We can see that the electric field appears also

in the disk region with the increasing of z at the condition
which ring is excited.

IV. EXPERIMENT

In order to verify the theory derived in this paper, ex-
perimental works have been carried out at 24 GHz. Fig. 6
shows a coupling structure and an experimental set-up for
measuring electromagnetic field distribution. The employed
coupling structures have the same dimensions and the same
material as calculated ones. A monopole antenna is controlled
by an XY stage to pick up the strength of electromagnetic
field. The strength at each point is measured by a network
analyzer. A desktop computer is used to control the analyzer
and the stage. The measurement is performed automatically. It
is easy to find that the experimental results of coupled electric
field distribution shown in Fig. 7 are in a good agreement with
the theoretical ones shown in Fig. 5.

V. CALCULATIONOF THE POWER

By multiplying the electrical field component extracted from
(8a) with intrinsic magnetic field of the disk and/or ring,
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Fig. 5. Theoretical result of electric field distribution of the coupled system
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Fig. 6. The coupling part and experimental set-up for measuring electric
field distribution.

we can get modal amplitude first of all. Then the power
propagating along the disk and/or ring can be obtained from
this modal amplitude. As an example, the modal amplitude on
the disk when the disk is excited can be written as

cam
AP =

//
{m,(~) exp[–j(& – ~~p)%%]~ypi

—Im. o

+ mq(19) ew[-j(Pq – ~~q)%~ql~yqi}
X H.p? . ~ dr dy. (13)

Therefore the power propagating along the disk can be ob-

tained as follows:

P,= ~.
4

(14)
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Fig. 7. Experimental result of electric field distribution of the coupled system
(ring is excited).

In Fig. 8, we give the results of the propagating power along
the disk when the disk is excited (solid line) and those of the
power transferred to disk from the ring when the ring is excited
(dashed line) in decibel. Resulting from closely matched radii
or a greater dielectric proximity, the propagating power of the
CASE1 behaves more changeable than that of the CASE2.
Take the case of solid line in CASE1, there is a decrease to 5

dB in the region of –0.8 rad. <6<0.2 rad., which implies the

propagating power of the disk transfers into the ring. The solid
line then rise to O dB again in 0.2 rad. <0<0.8 rad., which
implies the propagating power goes back to the disk from the
ring. The other hand, the powers of the CASE2 remain stable

after passing the small coupling region.

VI. CONCLUSION

The analytical method for coupling characteristics of the

dielectric disk and ring in eccentric configuration is developed.

The coupled-mode equation is established from the Lorentz’s

reciprocity theorem. Through solving the coupled-mode equa-
tion, we can calculate the distributed coupling coefficients and
coupled electric field distributions around the coupling region
accurately. The measured coupled field distributions are in
a good agreement with calculated ones. The electromagnetic
powers propagating along the disk are also calculated. As a
result, that adequate coupling quantity between the disk and

ring can be expected from this eccentric configuration enables
us to utilize it to many applications. The proper analytical
approach presented in this paper will be applied to design
an eccentric configuration coupled resonator having the large
FSR characteristic. Furthermore, the coupled resonator would
be used for a high performance filter at millimeter wave band
in the near future.
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respectively.

direction. (he x ~w) and (~o x 11~) are remarkably weak

APPENDIX A
compared to the (E-y x Hr). Therefore, the first integration

DERIVATIONOF RECIPROCITYRELATION (2)
of (A2) on the right-hand is approximately zero. The similar

urocedure can also be applied to WGE mode
For a vector A = ;Ar + 8A0’ + yAY in cylindrical -

. .

coordinates, we define
\

Vt. Adsz O. (A3)
.

‘“A=(V’+H”A‘A’) ‘-Substituting the vector Ea x Hb – Eb x Ha into (A2) and

using the condition of (A3), for (1) which discussed in the
as we consider circular propagating mode i.e., WG mode in text, we have
the paper, ~ represents a unit vector in longitudinal direction
and t represents a transverse component, i.e.,

a

a I
;(Eax Hb-Ebx Ha)&irdy

1 d(rAr) 8AY s
Vt. A= G7+—.

ay ‘jw //(Ea(L@,Y) -~IJ(~,@,$J))&~~~~@

Using the vector identity (Al) [12] over a cross section in the
JJ
s

transverse plane, we have which is a differential equation varying with O

I V. Ads
APPENDIX B

s WGH MODE FIELDS OF DIELECTRIC DISK AND RING

‘JI’’+%J”A’S The EVP components of dielectric disk for different areas

8 [Fig. 9(a)] are written as follows:

~ I

Area 1:—— Vt. Ads+ ;~.dds (A2)
EYP = CIJ., (apr)COS(~VpZJ)ew-jqi%)s s

where S is an area in the r, y plane. Keeping the assumptions Area 2:

1 N 3 as stated in the text in mind, we do the integration of EYP = C’zH~~)(pPr) Cos(kv, g) exp(–jvPdP).
(A2) by considering the vector A to be the electromagnetic
fields of the WG mode. According to the classification of Area 3, 4:
the WG mode [4], here, we take the WGH mode as an
example. For the WGH mode, there exists the fields of

EY, Hr, EO, He, ET and HY. Among them, only the (Ey x The other components of electromagnetic fields can be derived

IIr) gives a strong power which propagates along the 9 from Maxwell’s equations.
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Similarly , the 13y~ components of dielectric ring for differ-
ent areas [Fig. 9(b)] are as follows:
Area 1:

Area 2:

EVQ = (D2J.q (aqr) + D3iVv, (~,r)).

. COS(kYqy) exp(–jvJ3q).

Area 3:

Eyq = (D@$(Pqr-) Cos(ku, g) exp(–jvJ3~).

Area 4, 5:

where

‘,, = - and ‘,,= =

Jv, Nv and 11~2) are Bessel, Neumann, and Hankel function,
respectively. In the analysis, we assume that the electromag-

netic fields are well confined in the disk and ring and the fields
of shaded region in Fig. 9(a) and (b) are ignored.

APPENDIX C

DERIVATION OF LONGITUDINAL COMPONENTS IN (8a)

Similarly to Appendix A, for a vector A = ?Ar+8Ae +jAy

in cylindrical coordinates, we define

‘XA=(V’+:9:)XA(cl)

where t and 0 indicate the transverse and longitudinal com-
ponents, respectively. Using the relation of (Cl), we have, for
the guided modes

Vt XE1–jLJpH1=-; ;OXE1 (C2)

Vt XH1+jWE& =–:$8 XH1 (C3)

and a similar set of equations for S, (r-, 6’,y), E2, H2 For the

coupled-waveguide medium, we have

Vtx E–jwpH=–; ;;x E (C4)

Vtx H+jw&E=–; ;8x H. (C5)

Breaking the (C5) into the transverse and longitudinal
components and just paying attention to the 6 components,
we have

Ee=–. .
1

Vt x Ht
jWE(~, 6, y)

1.. Vt x (mp(~)ll~ + mq(W~)
– jw:(r, 0, y)

—_—
jti~(j, 6, y) (mP(0)vt x Hpt + mq(OVt x ~@)

-- ~u;(:,fl, y) (mP(fo(-.@’P(f-, ~,Y)q9e)
—

+ mq(o)(–juq(r> ~, Y) Eqfr))

%(r) ~) Y)Eqo&p(T, ~) Y)EPO + W(O) E(T, 0, Y)
=mp(o) (C6)

2(?’,!9,y)

Here, E@ is the sum of longitudinal components of disk and
ring in (8a). A similar procedure can be applied to H8.
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